FACTSHEET

This factsheet summarises the main methods, formulae and information required for tackling questions on the topics in this booklet.

1 Time value of money
The accumulated value of 1 (invested at time 0) at time t is $(1+t i)$ if we have simple interest and $(1+i)^{t}$ if we have compound interest.

The discount factor, v, is $\frac{1}{1+i}$.

The discount factor for a period of n years using a simple rate of discount d is $1-n d$.

The connection between compound rates of interest and discount is $d=1-v=1-(1+i)^{-1}$.

2 Interest rates
The definition of the force of interest $\delta(t)$ is $\lim _{h \rightarrow 0+} \frac{A(t, t+h)-1}{h}$.

The accumulation factor from time t_{1} to time t_{2} is $A\left(t_{1}, t_{2}\right)=\exp \left[\int_{t_{1}}^{t_{2}} \delta(t) d t\right]$. Correspondingly, the discount factor from time t_{2} to time t_{1} is $\exp \left[-\int_{t_{1}}^{t_{2}} \delta(t) d t\right]$.

The present value at time a of a payment stream of $\rho(t)$ received between time a and time b where the force of interest is $\delta(t)$ is:

$$
\int_{a}^{b} \rho(t) \exp \left[-\int_{a}^{t} \delta(s) d s\right] d t
$$

The accumulated value at time b of a payment stream of $\rho(t)$ received between time a and time b where the force of interest is $\delta(t)$ is:

$$
\int_{a}^{b} \rho(t) \exp \left[\int_{t}^{b} \delta(s) d s\right] d t
$$

If the force of interest is a constant, δ, then $A\left(t_{1}, t_{2}\right)=\exp \left[\delta\left(t_{2}-t_{1}\right)\right]$, $i=e^{\delta}-1, \delta=\ln (1+i), v=e^{-\delta}$ and $1-d=e^{-\delta}$.

The connections between nominal and effective rates of interest are:

$$
1+i=\left(1+\frac{i^{(p)}}{p}\right)^{p} \quad i^{(p)}=p\left((1+i)^{\frac{1}{p}}-1\right)
$$

The connections between nominal and effective rates of discount are:

$$
1-d=\left(1-\frac{d^{(p)}}{p}\right)^{p} \quad d^{(p)}=p\left(1-(1-d)^{\frac{1}{p}}\right)
$$

3 Annuities

The present value at time 0 of payments of 1 at time 1,1 at time 2,1 at time 3 and so on until 1 at time n, is given by a_{n}. The formula for a_{n} is:

$$
a_{n}=\frac{1-v^{n}}{i}
$$

The present value at time 0 of payments of 1 at time 0,1 at time 1,1 at time 2 and so on until 1 at time $n-1$, is given by \ddot{a}_{n}. The formula for \ddot{a}_{n} is:

$$
\ddot{a}_{n}=\frac{1-v^{n}}{d}
$$

The connections between these values are $\ddot{a}_{n}=(1+i) a_{n}$ and $\ddot{a}_{n \mid}=1+a_{n-1}$.

The accumulated value at time n of payments of 1 at time 1,1 at time 2,1 at time 3 and so on until 1 at time n, is given by s_{n}. The formula for s_{n} is:

$$
s_{n}=\frac{(1+i)^{n}-1}{i}=(1+i)^{n} a_{n}
$$

The accumulated value at time n of payments of 1 at time 0,1 at time 1,1 at time 2 and so on until 1 at time $n-1$, is given by \ddot{s}_{n}. The formula for \ddot{s}_{n} is:

$$
\ddot{s}_{n}=\frac{(1+i)^{n}-1}{d}=(1+i)^{n} \ddot{a}_{n}
$$

The connections between these values are $\ddot{s}_{\bar{n}}=(1+i) s_{\bar{n}}$, and $\ddot{s}_{\bar{n}}+1=s_{\overline{n+1}}$.
The present value at time 0 of payments of 1 pa payable continuously for n years is given by \bar{a}_{n}. The formula for \bar{a}_{n} is:

$$
\bar{a}_{n}=\frac{1-v^{n}}{\delta}
$$

The accumulated value at time n of payments of 1 pa payable continuously for n years is given by \bar{s}_{n}. The formula for \bar{s}_{n} is:

$$
\bar{s}_{\bar{n}}=\frac{(1+i)^{n}-1}{\delta}=(1+i)^{n} \bar{a}_{n}
$$

The present value at time 0 of payments of 1 pa payable p thly in arrears for n years is given by $a_{n}^{(p)}$. The amount of each payment is $\frac{1}{p}$. The formula for $a_{n}^{(p)}$ is:

$$
a_{n}^{(p)}=\frac{1-v^{n}}{i^{(p)}}=\frac{i}{i^{(p)}} a_{n}
$$

The present value at time 0 of payments of 1 pa payable p thly in advance for n years is given by $\ddot{a} \underset{n}{(p)}$. The amount of each payment is $\frac{1}{p}$. The formula for $\ddot{a} \ddot{n}^{(p)}$ is:

$$
\ddot{a} \frac{(p)}{n}=\frac{1-v^{n}}{d^{(p)}}=\frac{i}{d^{(p)}} a_{n}
$$

The connection between these values is $a \frac{(p)}{n}=v^{\frac{1}{p}} \ddot{a} \frac{(p)}{n}$.
There are equivalent formulae for $s_{n}^{(p)}$ and $\ddot{s} \frac{(p)}{n}$, namely:

$$
s_{n}^{(p)}=\frac{(1+i)^{n}-1}{i^{(p)}}=(1+i)^{n} \frac{i}{i^{(p)}} a_{n}, \ddot{s_{n}(p)}=\frac{(1+i)^{n}-1}{d^{(p)}}=(1+i)^{n} \frac{i}{d^{(p)}} a_{n}
$$

4 Deferred and increasing annuities

The present value at time 0 of payments of 1 at time $m+1,1$ at time $m+2$, 1 at time $m+3$ and so on until 1 at time $m+n$, is given by $m \mid a_{n}$. The formula for ${ }_{m \mid} a_{n}$ is:

$$
m \mid a_{n}=a_{m+n}-a_{m}=v^{m} a_{n}
$$

The corresponding annuity due, continuously payable annuity and p thly annuities are given by:

$$
\left.\begin{array}{ll}
m \mid & \ddot{a}_{n \mid}=\ddot{a}_{m+n}-\ddot{a}_{m \mid}=v^{m} \ddot{a}_{n} \\
\bar{a}_{n}=\bar{a}_{m+n}-\bar{a}_{m \mid}=v^{m} \bar{a}_{n} \\
m \mid & a_{n}^{(p)}=a \frac{(p)}{m+n}-a \frac{(p)}{m}=v^{m} a \frac{(p)}{n}
\end{array} \quad m \right\rvert\, \ddot{a}_{n}^{(p)}=\ddot{a} \frac{(p)}{m+n}-\ddot{a} \frac{(p)}{m \mid}=v^{m} \ddot{a}_{n}^{(p)}
$$

The present value at time 0 of payments of 1 at time 1,2 at time 2,3 at time 3 and so on until n at time n, is given by $(l a)_{n}$. The formula for $(l a)_{n}$ is:

$$
(l a)_{n}=\frac{\ddot{a}_{n}-n v^{n}}{i}
$$

The present value at time 0 of payments of 1 at time 0,2 at time 1,3 at time 2 and so on until n at time $n-1$, is given by $(l a ̈)_{n}$. The formula for $(l a ̈)_{n}$ is:

$$
(\mid \ddot{a})_{\bar{n}}=\frac{\ddot{a}_{n}-n v^{n}}{d}
$$

The present value at time 0 of payments of r made continuously through year r for n years is given by $(\bar{l})_{n}$. The formula for $(l \bar{a})_{n}$ is:

$$
(\mid \bar{a})_{\bar{n}}=\frac{\ddot{a}_{n}-n v^{n}}{\delta}
$$

The present value at time 0 of a rate of payment of t at time t for n years is given by $(\bar{l} \bar{a})_{\bar{n}}$. The formula for $(\bar{l} \bar{a})_{\bar{n}}$ is:

$$
(\bar{l} \bar{a})_{\bar{n}}=\frac{\bar{a}_{n}-n v^{n}}{\delta}
$$

The accumulated values can be found by accumulating the present values, for example:

$$
(\mid s)_{n}=(1+i)^{n}(l a)_{n}
$$

Deferred annuities can be calculated in the obvious way, for example:

$$
m \mid(l a)_{n}=v^{m}(\mid a)_{n}
$$

